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ABSTRACT

THE NUMERICAL EVALUATION OF THE MAXIMUM-
LIKELIHOOD ESTIMATE OF A SURSET OF

MIXTURE PROPORTIGNS

In this note, we give necessary and sufficient conditions for a maximum-
likeliktood estimate of a subset of mixture proportions. From these conditions,
we derive likelihood equations satisfied by the maximum-likelihood estimate
and discuss a successive-approximations procedure suggested by these equations
for numerically evcluating the maximum-likelihood estimate. It is shown that,
with probability 1 for large samples, this procedure converges locally to the
maximum—likelih;od estimate whenever a certain step-size lies between 0 and 2.

Furthermore, optimal rates of local convergence are obtained for a step-size

which is bounded below by a number between 1 and 2.
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by
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1. Introduction.

let x be an n-dimensional random variable whose density function is a

convex combination of density functions po,pl,...,pm on ﬂQn. In particular,
suppose that the density function of x 1is p(x,Eo), a member of the para-

metric family of density functions
- m
p(x,0) = ,Z,a.p (x) + (1 - B)p, (x)

for x eﬁ\’n, where a = (a.l,...,(x.m)T e[Rm and B satisfy the following con-

%*This author was supported in part by NASA under Contract JSC-NAS-9-12777.



o
straints: (1) 0< B <1 and 0 s ay €1 for i=1,...,m (11) 12101 = g,
In this note, we assume that B and the density functions PgrecesPy are
known, and we address the problem of numerically estimating E“. the vector
of unknown mixture proportions, on the basis of a given sample {xk}k-l.....ﬁ
of independent observations on x.

To be more specific, we define a maximum-likelihood estimate of EP.

based on the given sample, to be a choice of o which satisfies the constraints

(1) and (ii) above and which maximizes the log-likelihood functicn

L@ = L, log px )

(We assume throughout this report that p(xk;a) #0 for k=1,,..,8 and for
all o satisfying the given conmstraints.) In the following, we derive necessary
and sufficient conditions for o to be a maximum-likelihood estimate of EP.
and we discuss a parficular iterative procedure based on these conditions
for the numerical evaluation of a maximum-likelihood estimate.

The results given here generalize those of [2], in which a restricted
iterative procedure is considered in the special case B = 1. We also remark
that our results apply to the problem of numerically evaluating a maximum—

likelihood estimate of a proper subset {o°} of mixtur; proportions

i‘i=1,...,m
8
in a density p = iélagpi when the remaining s-m proportions are known.

Indeed, this problem is seen to be of the type considered here by taking

= - o ___1__ s (¢}
B=1- 5o ad Py " TE gefie1®iPyr

{=mt+l1 1



2. 'fhe likelihood equatioms.

One easily verifies that the log-likelihood function L 1is a concave
function of o on the constraint set, i.e., the set of elements of Rm
satisfying the constraints (i) and (ii) given in the introduction. It
follows that a necessary and sufficient condition for @ to be a maximum-
1ikelihood estimate of a° is that VL(@)(@' - o) s 0 for all o' 4in the
constraint set, where VL(a) = (gé;d;),..., %%5(&3). Since this inequality
holds if and only if it holds whenever a' is :n extreme point of the constraint
set, one concludes that ¢ is a maximum-1likelihood estimate if and only if,
for 1 =1,...,m, B g—:—;—-(&) < VL(E)E, with equality if a, > 0. We reformulate
this result as the follgwing necessary and sufficient condition for o to be

a maximum-1likelihood estimate of a°: For 4 = 1l,...,m,

N (x) a.p,(x)

(1) Bkzl Py % < %l g s b R ,
= -— jal k=1 —

P(xk,a)

with equality if a, > 0.

Multiplying both sides of (1) by o, and rearranging gives the following

i

necessary condition for @ to be a maximum-likelihood estimate:

_ N aipi(xk) Im N a.p (xk)
@ o =A@ 2 BE ———t /F, k) A

P(x,,0) p(x, ;@)

for 1 =1,...,m. This condition is not sufficient in general for o to be a
maximum-likelihood estimate. Indeed, this condition is satisfied by each extreme
point of the constraint set. However, this condition is sufficient as well as
necessary for @ to be a ma;(imum-likelihood estimate which lies in the interior
of the constraint set, i.e., the components of which satisfy a, > 0 for

i
i=1,...,m. We refer to the equations (2) as the likelihood equations.




3. The iterative procedure.

We now define an iterative procedure based on the likelihood equations and
discuss its applicability to the problem of numerically evaluating a maximum-
1ikelihood estimate of a° . Setting A(o) = (Al(zb,...,Am(Eb)T, we write the

likelihood equations as
(3) a = A(Q).

Equivalent to (3) 1is the equation

(4) a=0 (@ = (1-ea+ea@)
for any number e. (Of course, (4) becomes (3) when € = 1.) Note that
the continuous nonlinear operator A maps the constraint set into itself. For
any € and any o in the constraint set, the components of Qed;) sum to 1;
however, the components of ¢€(E) are guaranteed to be non-negative for all o
in the constraint set only i1f 0 < ¢ < 1.

The iterative procedure suggested by (4) is thé following: Beginning

(L

with some starting value o in the constraint set, define successive iterates

inductively by
(5) D L @)

for j =1,2,... . We observe that if the sequence of iterates defined by (5)
converges, then its limit is a fixed point of 06 and, hence, of A, Our first
theorem gives sufficient conditions for such a limit to be a maximum-likelihood

estimate. The proof of the theorem is virtually the same as that of the
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corresponding theorem in {2], and we omit it.

THEOREM 1: Suppose that 6‘1’ lies in the interior of the constraint set and

that 0 < ¢ € 1. If the sequence of iterates defined by (5) converges, then

1its 1limit 1s a maximum-likelihood estimate of a .
In order to give sufficient conditions for the convergence of the iterates

defined by (5), we need to make further assumptions concerning the density

functions  ISTERE Henceforth, we assume that they are linearly independent,

. o o2
ije., that any linear combination i§0 4Py with 120 ey ¥ 0, does not vanish

identically on G(n. This insures that, with probability 1, there exists a

unique maximum-likelihood estimate for large N which converges to a° as N

approaches infinity. (See, for example, Appendix 1 of [3].) Our aim is to

establish the following result.

THEOREM 2: Suppose that =2 1ies in the interior of the constraint set and

that 0 < € < 2. Then with probability 1 as N approaches infinity, ¢€

is a local contraction on the constraint set near o, the (unique) maximum-

likelihcod estimate of a°. If the density functions Pyse-oPy are analytic
as wvell as linearly independent, then QE 'is a local contraction on the con-

straint set near & with probability 1 whenever o 1lies in the interior of
the constraint set and N 2 m,

In soying that ¢€ is a local contraction on the constraint set near 6}

we mean that there exists a norm || || on R™ and a constant A, 0 s X <1,

such that

® [18,G" = all s 3 1" - ol
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for all &' 4in the constraint set which lie sufficieatly near G. Our sufficient
conditions for the convergence of the iterates defined by (5) are stated in
the corollary below, which 1s an immediate consequence of Theorem 2 and the

inequality (6).

COROLLARY: Suppose that @° 1lies in the interior of the constraint set and
that 0 < € < 2. Then with probability 1 aé N approaches infinity, the
iterates defined by (5) converge to &, the (unique) maximum-likelihood
estimate of ‘a°, whenever ‘3(1) lies sufficiently near o. If the density
functions Pyre 2P, 8TE analytic as well as linearly independent, then, with
probability 1 whenever @ 1lies in the interior of the comstraint set and

N 2 m, the iterates converge to o whenever '3(1) lies sufficiently near

a.

Proof of Thecrem 2: 1In proving the first statement of the theorem, it may be

assumed that the (unique) maximum-likelihood estimate & lies in the interior
of the constraint set. (By the remarks preceding the theorem, the probability
is 1 that this occurs for large N.) Assuming O < € < 2, we must show that,
with probability 1 as N approaches infinity, an inequality of the form (6)
holds,

m
For any norm on (R, one can write

¢, @) -3 =9 @[ -a)+ofa -3llh.

In this expression, V¢€(Eb denotes the m*m matrix whose ijsh entry is

h y -
the 2 component of %as Qc(a). It follows that the first statement of the

theorem will be proved if it can be shown that, with probability 1 as N



g
=2

approaches infinity, there exists a norm || || onm ®  and a number A,

0sA<1,

for which an inequality of the form

) [Ive @vl| < » [1¥l]

holds for all -Y- in the subspace

E' {7' (Yls-'-v

Uging the fact that o satisfies the likelihood equations

verifies that V¢€(E) = I - ¢Q, where

N
1
Q= (diag o) { I
m N i
r 24P1%0) kel

i=1 k=1 p(xk,a)

T

/pl(xk) \

\ %))

-

P(xk o.&)

p(x, ,0) ’

2,

=0}cR .
1)
p.(x) [,
+ (1-8)—°-xL_—
p(x,,0) | ¢
1)

one

P, (x) \
P(x,+0)
)

L]
]

pm(xk)

P (xk 9’&) [

It 1s easily shown that E is invariant under Q and, hence, under We(a).

To establish an inequality of the form (7),

it suffices to show that, with

probability 1 as N approaches infinity, there exists a norm on E with

respect to which the operator norm of v¢€(E) is less than 1.

Define an inner product <-,> on E by Y, Y'> = ?T(diag a-l)'f' for
i

'-Y- and .Y—'

fact, positive semi-definite) on £ .

in . with respect to this inner product, Q 1s symmetric (in

It follows that, with respect to the
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norm on E defined by this inner product, the operator norm of VQ((E) on E is

less than 1 4if the eigenvalues of Q which correspond to eigenvectors in éf

lie in the interval (0,1].

Now Q 41s column stochastic; hence, no eigenvalue of Q on Ea is greater

than 1. (See

[1] for a discussion of column stochastic matrices.) To com-

plete the proof of the first statement of the theorem, it need only be shown

that, with probability 1 as N approaches infinity,

Q 1s positive-definite

on & . Now, with probability 1, o converges to a° as N approaches

infinicy.

Using argumants analogous to those employed in [3],

one verifies

that, with probability 1, Q converges as N approaches infinity to

[}
-

Pl(x)

%(d:lag a:){ 'n/ 8 .
R

L]

Py (x)

p(x,0%)

p(x,T°)

+ (1-8)

Po(x)

p(x,3°)

b o . w

-

P, (x) T

p(x,a°)
p(x oao) dX} ]

a positive-definite operator on E. 1t follows that Q 418 positive-definite

on E with probability 1 as N approaches infinity, and the first state-

ment of the theorem is proved.

To prove the second statement of the theorem, suppose that N 2 m,

that

@ 1lies in the interfor of the constraint set, and that Pysreee 1Py are analytic

as well as linearly independent.

Repeating the above argument with only minor

changes, one obtains the desired result by finally observing that, as a con-

sequence of the lemma in Appendix 2 of ([3], Q 1is positive-definite on E

with probability 1 whenever

N2 m

This completes the proof of the theorem.
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4. The optimal e.

The corollary of Theorem 2 may be summarized by saying thet, if a° 1ldes
in the interior of the constraint set, then, with probability 1 for large
samples, the iterates defined by (5) converge locally to the maximum-likelihood
estimate o whenever 0 < ¢ < 2. Thus the iterative procedure (5), which is
a generalized steepest-ascent (deflected-graiient) method, has the particularly
important property of converging locally to o whenever the step-size ¢ lies
in an interval which is completely independent of the particular mixture problen
at hand. Furthermore, if ¢ 18 no greater than 1, then the successive
iterates defined by (5) are guaranteed to remain in the constraint set. It
is readily ascertained that these properties are not shared by the usual steepest-

ascent procedure, given by

(D) | (q) v el 3 Py m 3 Py %)
i N k=1 x -—(q)) nN js1 k=1
for 1 =1,...,m
We now observe that there exists a particular value of ¢, referred to
as "the optimal ¢," which yields, with probability 1 for large samples,
the fastest uniform rate of local convergence of (5) near a. Indeed, suppose
that & is an interior point of the constraint set and that VQ‘(GD is
positive-definite on E: (Recall that, with probability 1, these assumptions
are valid for large samples.) Then one sees from the proof of Theuvrem 2 that
the optimal ¢ is the uniquc value of ¢ which minimizes the spectral radius
of V¢(d;) = [ - «Q, regarded as an operator on F. (V¢£(a) is syumctric on
5. with respect to the inner product <*,:> defined previously. Conscquontly,

its operator norm with respect to this inner product is equal to its spectral
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radius and, hence, minimal.) It is easily verified that che optimal ¢ 1is
given by 1 - ¢T =e¢p -1, l.e., €= 5%? , where p and 1 are, respectively,
the largest and smallest eigenvalues of the operator Q restricted to E

It follows from the proof of Theorem 2 that p 48 never greater than 1.
Thus the optimal ¢ 18 bounded below by i%?' where T 1lies between 0 and
1. In particular, this lower bound on the optimal ¢ lies between 1 and 2.
It should be noted that, if p is strictly less than 1, then the optimal ¢
is actnally greater than 2, even though Theorem 2 fails to guarantee the
local cenvergence of (5) for such values of €. We also observe that, despite
the fr-i tinat the column-stochastic matrix Q always has 1 as an eigenvalue,
the eigenvalue p of the restricted operator Q on E can be arbitrarily
small (and, hence, the optimal ¢ can be arbitrarily large). Indeed, Q is
nearly the zero operator on ¥ if the component populations in the mixture are
nearly identical.

Suppose that the component populations in the mixture are "widely separated”

in the serse that, tor i ¢ j,

Py (xk) Py (xk)
p(xk.&-) 2

=0

for k=1,...,N. Then Q= ' and, hence, P and T must lie near 1. One
concludes that, with probability 1 for large samples, the fastest uniform

rate of local convergence of (5) is obtained for ¢ near 1, anc for the
optimal «, v¢€6§) =1 - ¢Q =~ 0. Thus for mixtures whose component populations
are widely separated, the optimal ¢ 1s only slightly greater than 1, and

rapid first-order local convergence of (5) to o can be expected for this e.
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Now suppose that two or more of the component populations in the mixture
are nearly identical in the sense that, for some pair of distinct, non-zero
indices i and j, pi(xk) ~ p(xk) for k=1,...,N. Then Q is nearly
singular, and hence, T 1is near zero. <{onsequently, the optimal ¢ cannot
be much smaller than 2. We remark that, if p is near 1 in this case, then
the optimal ¢ must lie near 2. Then the spectral radius of v¢€(&) on &
is near 1, even for the optimal €, and it follows that slow first-order

local convergence of (5) to o can be expected in this case.
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